import rtemis as rt
▄▄▄ ▄▄▄▄▄▄▄▄ .• ▌ ▄ ·. ▪ .▄▄ ·
▀▄ █·•██ ▀▄.▀··██ ▐███▪██ ▐█ ▀.
▐▀▀▄ ▐█.▪▐▀▀▪▄▐█ ▌▐▌▐█·▐█·▄▀▀▀█▄
▐█•█▌ ▐█▌·▐█▄▄▌██ ██▌▐█▌▐█▌▐█▄▪▐█
.▀ ▀ ▀▀▀ ▀▀▀ ▀▀ █▪▀▀▀▀▀▀ ▀▀▀▀ py
.:rtemispy v.0.2.1 🏝 macOS-13.4.1-arm64-arm-64bit
import rtemis as rt
▄▄▄ ▄▄▄▄▄▄▄▄ .• ▌ ▄ ·. ▪ .▄▄ ·
▀▄ █·•██ ▀▄.▀··██ ▐███▪██ ▐█ ▀.
▐▀▀▄ ▐█.▪▐▀▀▪▄▐█ ▌▐▌▐█·▐█·▄▀▀▀█▄
▐█•█▌ ▐█▌·▐█▄▄▌██ ██▌▐█▌▐█▌▐█▄▪▐█
.▀ ▀ ▀▀▀ ▀▀▀ ▀▀ █▪▀▀▀▀▀▀ ▀▀▀▀ py
.:rtemispy v.0.2.1 🏝 macOS-13.4.1-arm64-arm-64bit
Load iris dataset from disk
= rt.read("~/Data/iris.csv") iris
06-25-23 14:51:32 ▶ Reading iris.csv... :read
06-25-23 14:51:33 Got 149 rows & 5 columns :read
06-25-23 14:51:33 Read in 0.00869 seconds :read
"sepal_length"]) rt.dplot3_box(iris[:,
For smaller datasets, it is often useful to show the individual data points using boxpoints="all"
.
rt.dplot3_box("sepal_length"],
iris[:, ="all") boxpoints
Visualize multiple variables:
rt.dplot3_box(0:4],
iris[:, ="all") boxpoints
"sepal_length"]) rt.dplot3_x(iris[:,
"sepal_length"], hist_nbins=24) rt.dplot3_x(iris[:,
rt.dplot3_xy("sepal_length"],
iris["petal_length"]) iris[
Add a regression line:
rt.dplot3_xy("sepal_length"],
iris["petal_length"],
iris[= "Sepal Length",
xlab = "Petal Length",
ylab ="glm") fit
Group by a categorical variable:
rt.dplot3_xy("sepal_length"],
iris["petal_length"],
iris[=iris["species"],
group= "Sepal Length",
xlab = "Petal Length") ylab
Fits are automatically applied by group:
rt.dplot3_xy("sepal_length"],
iris["petal_length"],
iris[=iris["species"],
group="glm",
fit= "Sepal Length",
xlab = "Petal Length") ylab